Initial commit

This commit is contained in:
2025-11-17 14:40:11 +05:30
commit 618423e8d2
10 changed files with 2434 additions and 0 deletions

0
micrograd/__init__.py Normal file
View File

104
micrograd/engine.py Normal file
View File

@@ -0,0 +1,104 @@
import math
class Value:
def __init__(self, data, _parents=(), _op=''):
self.data = data
self._parents = _parents
self._op = _op
# gradient
self.grad = 0.0 # at init, the value does not affect the output
self._backward = lambda: None
def __repr__(self):
return f"Value(data={self.data})"
def __add__(self, other: 'Value') -> 'Value':
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += 1.0 * out.grad
other.grad += 1.0 * out.grad
out._backward = _backward
return out
def __radd__(self, other: 'Value') -> 'Value':
return self + other
def __mul__(self, other: 'Value') -> 'Value':
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def __neg__(self) -> 'Value':
return -1 * self
def __sub__(self, other: 'Value') -> 'Value':
return self + (-other)
def __rsub__(self, other: 'Value') -> 'Value':
return Value(other) - self
def __rmul__(self, other: 'Value') -> 'Value':
return self * other
def __pow__(self, other: 'Value') -> 'Value':
assert isinstance(other, (int, float)), "only support int/float powers for now"
out = Value(self.data**other, (self, ), f'**{other}')
def _backward():
self.grad += (other * self.data**(other - 1)) * out.grad
out._backward = _backward
return out
def __truediv__(self, other: 'Value') -> 'Value':
return self * other**-1
def tanh(self) -> 'Value':
x = self.data
_tanh = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(_tanh, (self, ), 'tanh')
def _backward():
self.grad += (1 - _tanh ** 2) * out.grad
out._backward = _backward
return out
def exp(self) -> 'Value':
x = self.data
out = Value(math.exp(x), (self, ), 'exp')
def _backward():
self.grad += out.data * out.grad
out._backward = _backward
return out
def backward(self):
topo = []
visited = set()
def build_topo(v: 'Value'):
if v not in visited:
visited.add(v)
for child in v._parents:
build_topo(child)
topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()

39
micrograd/nn.py Normal file
View File

@@ -0,0 +1,39 @@
import random
from micrograd.engine import Value
class Neuron:
def __init__(self, n_inputs: int):
self.w = [Value(random.uniform(-1, 1)) for _ in range(n_inputs)]
self.b = Value(random.uniform(-1, 1))
def __call__(self, x: list) -> Value:
activations = sum((w_i * x_i for w_i, x_i in zip(self.w, x)), self.b)
out = activations.tanh()
return out
def parameters(self):
return self.w + [self.b]
class Layer:
def __init__(self, n_inputs: int, n_outputs: int):
self.neurons = [Neuron(n_inputs) for _ in range(n_outputs)]
def __call__(self, x: list) -> list[Value]:
outs = [n(x) for n in self.neurons]
return outs
def parameters(self):
return [p for n in self.neurons for p in n.parameters()]
class MLP:
def __init__(self, n_inputs: int, n_outputs: int):
sz = [n_inputs] + n_outputs
self.layers = [Layer(sz[i], sz[i + 1]) for i in range(len(n_outputs))]
def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x
def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]