3 Commits

Author SHA1 Message Date
97505b15f6 Update README to include blog link
Added a link to the blog for smoltorch.
2025-11-20 13:10:30 +05:30
978a7e7751 Release v0.1.0 2025-11-17 22:20:13 +05:30
eb7146e578 camera ready version 2025-11-17 22:16:49 +05:30
23 changed files with 492 additions and 1191 deletions

37
.github/workflows/publish.yml vendored Normal file
View File

@@ -0,0 +1,37 @@
name: Publish to PyPI
on:
push:
tags:
- 'v*' # Trigger on version tags like v0.1.0, v1.0.0, etc.
workflow_dispatch: # Allow manual triggering
jobs:
build-and-publish:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.12'
- name: Install build dependencies
run: |
python -m pip install --upgrade pip
pip install build twine
- name: Build package
run: python -m build
- name: Check package
run: twine check dist/*
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
run: twine upload dist/*

360
README.md
View File

@@ -1 +1,359 @@
# **smoltorch**
# 🔥 smoltorch • [blog](https://blog.ifkash.dev/smoltorch)
<div align="center">
**A tiny autograd engine and neural network library built from first principles**
[![PyPI version](https://badge.fury.io/py/smoltorch.svg)](https://badge.fury.io/py/smoltorch)
[![Python 3.12+](https://img.shields.io/badge/python-3.12+-blue.svg)](https://www.python.org/downloads/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
*Inspired by Andrej Karpathy's micrograd, built for learning*
</div>
---
## 🎯 What is smoltorch?
smoltorch is a minimalist deep learning library that implements automatic differentiation (autograd) and neural networks from scratch using only NumPy. It's designed to be:
- **Educational**: Understand how modern deep learning frameworks work under the hood
- **Transparent**: Every operation is visible and understandable
- **Functional**: Train real models on real datasets with competitive performance
- **Minimal**: ~500 lines of readable, well-documented Python code
### Why "smoltorch"?
"Smol" + PyTorch. It's a tiny implementation that captures the essence of modern deep learning frameworks.
---
## ✨ Features
### Core Engine
-**Automatic differentiation** with dynamic computational graphs
-**NumPy-backed tensors** for efficient numerical computing
-**Broadcasting support** with proper gradient handling
-**Topological sorting** for correct backpropagation
### Operations
- **Arithmetic**: `+`, `-`, `*`, `/`, `**`
- **Matrix operations**: `@` (matmul)
- **Activations**: ReLU, tanh, sigmoid
- **Reductions**: sum, mean
- **Element-wise**: log
### Neural Networks
- **Layers**: Linear (fully connected)
- **Models**: Multi-layer perceptron (MLP)
- **Loss functions**: MSE, Binary Cross-Entropy
- **Optimizers**: SGD (Stochastic Gradient Descent)
---
## 📦 Installation
### From PyPI (recommended)
```bash
uv add smoltorch
```
### From source
```bash
git clone https://github.com/kashifulhaque/smoltorch.git
cd smoltorch
uv pip install -e .
```
### Development installation
```bash
uv pip install -e ".[dev]"
```
---
## 🚀 Quick Start
### Basic Tensor Operations
```python
from smoltorch import Tensor
# Create tensors
x = Tensor([1.0, 2.0, 3.0])
y = Tensor([4.0, 5.0, 6.0])
# Operations
z = x + y # Element-wise addition
w = x * y # Element-wise multiplication
a = x @ y.T # Matrix multiplication
# Backward pass
a.backward()
print(x.grad) # Gradients computed automatically!
```
### Training a Neural Network (Regression)
```python
from smoltorch import Tensor, MLP, SGD
from sklearn.datasets import make_regression
import numpy as np
# Generate data
X, y = make_regression(n_samples=100, n_features=5, noise=10)
y = y.reshape(-1, 1)
# Create model
model = MLP([5, 16, 16, 1]) # 5 inputs -> 16 -> 16 -> 1 output
optimizer = SGD(model.parameters(), lr=0.001)
# Training loop
for epoch in range(100):
# Forward pass
X_tensor = Tensor(X)
y_tensor = Tensor(y)
y_pred = model(X_tensor)
# Compute loss (MSE)
loss = ((y_pred - y_tensor) ** 2).mean()
# Backward pass
optimizer.zero_grad()
loss.backward()
# Update weights
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f"Epoch {epoch + 1}, Loss: {loss.data:.4f}")
```
### Binary Classification
```python
from smoltorch import Tensor, MLP, SGD, binary_cross_entropy
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler
# Load and preprocess data
data = load_breast_cancer()
X, y = data.data, data.target.reshape(-1, 1)
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Create classifier with sigmoid output
class BinaryClassifier(MLP):
def __call__(self, x):
x = super().__call__(x)
return x.sigmoid() # Output probabilities
model = BinaryClassifier([30, 16, 8, 1])
optimizer = SGD(model.parameters(), lr=0.01)
# Training loop
for epoch in range(200):
X_tensor = Tensor(X)
y_tensor = Tensor(y)
y_pred = model(X_tensor)
loss = binary_cross_entropy(y_pred, y_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 20 == 0:
accuracy = ((y_pred.data > 0.5) == y).mean()
print(f"Epoch {epoch + 1}, Loss: {loss.data:.4f}, Acc: {accuracy:.4f}")
# Result: ~96% test accuracy on breast cancer dataset! 🎉
```
---
## 📊 Real-World Performance
smoltorch achieves competitive results on standard benchmarks:
| Dataset | Task | Test Accuracy | Epochs |
|---------|------|---------------|--------|
| Breast Cancer | Binary Classification | 96.5% | 200 |
| Synthetic Regression | Regression | MSE: 95.7 | 100 |
---
## 🏗️ Architecture
### Computational Graph
smoltorch builds a dynamic computational graph during the forward pass:
```python
x = Tensor([2.0])
y = Tensor([3.0])
z = (x * y) + (x ** 2) # Graph: z -> [+] -> [*, **] -> [x, y]
z.backward() # Backpropagate through graph
print(x.grad) # dz/dx = y + 2x = 3 + 4 = 7.0
```
### How Autograd Works
1. **Forward pass**: Build computational graph with operations as nodes
2. **Topological sort**: Order nodes for correct gradient flow
3. **Backward pass**: Apply chain rule in reverse topological order
4. **Gradient accumulation**: Sum gradients from multiple paths
Example with broadcasting:
```python
x = Tensor([[1, 2, 3]]) # shape (1, 3)
y = Tensor([[1], [2]]) # shape (2, 1)
z = x + y # shape (2, 3) - broadcasting!
z.backward()
# x.grad sums over broadcast dimensions: shape (1, 3)
# y.grad sums over broadcast dimensions: shape (2, 1)
```
---
## 🧠 Supported Operations
### Element-wise Operations
```python
z = x + y # Addition with broadcasting
z = x - y # Subtraction
z = x * y # Multiplication
z = x / y # Division
z = x ** 2 # Power
```
### Matrix Operations
```python
z = x @ y # Matrix multiplication (with batch support)
```
### Activation Functions
```python
z = x.relu() # ReLU: max(0, x)
z = x.tanh() # Tanh: (e^2x - 1) / (e^2x + 1)
z = x.sigmoid() # Sigmoid: 1 / (1 + e^-x)
```
### Reductions
```python
z = x.sum() # Sum all elements
z = x.sum(axis=0) # Sum along axis
z = x.mean() # Mean of all elements
z = x.mean(axis=1) # Mean along axis
```
### Other
```python
z = x.log() # Natural logarithm
```
---
## 📚 Examples
Check out the `examples/` directory:
- [`train_regression.py`](examples/train_regression.py) - Train on synthetic regression data
- [`train_classification.py`](examples/train_classification.py) - Binary classification on breast cancer dataset
Run them:
```bash
uv run examples/train_regression.py
uv run examples/train_classification.py
```
---
## 🧪 Testing
Run the test suite:
```bash
uv run pytest
```
Tests cover:
- ✅ Addition with broadcasting
- ✅ Multiplication with broadcasting
- ✅ Matrix multiplication
- ✅ Activation functions (ReLU, tanh, sigmoid)
- ✅ Reductions (sum, mean)
- ✅ Linear layers
- ✅ Multi-layer perceptrons
- ✅ End-to-end training
---
## 🗺️ Roadmap
### Coming Soon
- [ ] **More optimizers**: Adam, RMSprop with momentum
- [ ] **More activations**: Leaky ReLU, ELU, Softmax
- [ ] **Regularization**: Dropout, L2 weight decay
- [ ] **Mini-batch training**: Efficient batch processing
- [ ] **Multi-class classification**: Softmax + Cross-Entropy loss
### Future
- [ ] **Convolutional layers**: CNN support for images
- [ ] **Model serialization**: Save/load weights in safetensors format
- [ ] **GPU acceleration**: Explore Metal Performance Shaders for Apple Silicon
- [ ] **Better initialization**: He initialization for ReLU networks
- [ ] **Learning rate scheduling**: Decay strategies
---
## 🎓 Learning Resources
If you're learning from smoltorch, these resources complement it well:
- [Andrej Karpathy's micrograd](https://github.com/karpathy/micrograd) - The original inspiration
- [Neural Networks: Zero to Hero](https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ) - Video series by Andrej Karpathy
- [The Matrix Calculus You Need For Deep Learning](https://arxiv.org/abs/1802.01528) - Paper on backpropagation math
---
## 🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes:
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request
---
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
---
## 🙏 Acknowledgments
- **Andrej Karpathy** for [micrograd](https://github.com/karpathy/micrograd) and the brilliant educational content
- **PyTorch team** for API design inspiration
- The deep learning community for making knowledge accessible
---
## 📬 Contact
Created by Kashif - feel free to reach out!
- GitHub: [@kashifulhaque](https://github.com/kashifulhaque)
- Twitter: [@notifkash](https://twitter.com/notifkash)
---
<div align="center">
**⭐ Star this repo if you found it helpful!**
Built with ❤️ for learners and tinkerers
</div>

View File

@@ -2,8 +2,8 @@ import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from nanotorch.tensor import Tensor
from nanotorch.nn import MLP, SGD, binary_cross_entropy
from smoltorch.tensor import Tensor
from smoltorch.nn import MLP, SGD, binary_cross_entropy
# Load breast cancer dataset (binary classification)
print("Loading breast cancer dataset...")

View File

@@ -1,7 +1,7 @@
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from nanotorch.tensor import Tensor
from nanotorch.nn import MLP, SGD
from smoltorch.tensor import Tensor
from smoltorch.nn import MLP, SGD
# Generate synthetic regression data
print("Generating data...")

View File

View File

@@ -1,104 +0,0 @@
import math
class Value:
def __init__(self, data, _parents=(), _op=''):
self.data = data
self._parents = _parents
self._op = _op
# gradient
self.grad = 0.0 # at init, the value does not affect the output
self._backward = lambda: None
def __repr__(self):
return f"Value(data={self.data})"
def __add__(self, other: 'Value') -> 'Value':
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += 1.0 * out.grad
other.grad += 1.0 * out.grad
out._backward = _backward
return out
def __radd__(self, other: 'Value') -> 'Value':
return self + other
def __mul__(self, other: 'Value') -> 'Value':
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def __neg__(self) -> 'Value':
return -1 * self
def __sub__(self, other: 'Value') -> 'Value':
return self + (-other)
def __rsub__(self, other: 'Value') -> 'Value':
return Value(other) - self
def __rmul__(self, other: 'Value') -> 'Value':
return self * other
def __pow__(self, other: 'Value') -> 'Value':
assert isinstance(other, (int, float)), "only support int/float powers for now"
out = Value(self.data**other, (self, ), f'**{other}')
def _backward():
self.grad += (other * self.data**(other - 1)) * out.grad
out._backward = _backward
return out
def __truediv__(self, other: 'Value') -> 'Value':
return self * other**-1
def tanh(self) -> 'Value':
x = self.data
_tanh = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(_tanh, (self, ), 'tanh')
def _backward():
self.grad += (1 - _tanh ** 2) * out.grad
out._backward = _backward
return out
def exp(self) -> 'Value':
x = self.data
out = Value(math.exp(x), (self, ), 'exp')
def _backward():
self.grad += out.data * out.grad
out._backward = _backward
return out
def backward(self):
topo = []
visited = set()
def build_topo(v: 'Value'):
if v not in visited:
visited.add(v)
for child in v._parents:
build_topo(child)
topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()

View File

@@ -1,39 +0,0 @@
import random
from engine import Value
class Neuron:
def __init__(self, n_inputs: int):
self.w = [Value(random.uniform(-1, 1)) for _ in range(n_inputs)]
self.b = Value(random.uniform(-1, 1))
def __call__(self, x: list) -> Value:
activations = sum((w_i * x_i for w_i, x_i in zip(self.w, x)), self.b)
out = activations.tanh()
return out
def parameters(self):
return self.w + [self.b]
class Layer:
def __init__(self, n_inputs: int, n_outputs: int):
self.neurons = [Neuron(n_inputs) for _ in range(n_outputs)]
def __call__(self, x: list) -> list[Value]:
outs = [n(x) for n in self.neurons]
return outs
def parameters(self):
return [p for n in self.neurons for p in n.parameters()]
class MLP:
def __init__(self, n_inputs: int, n_outputs: int):
sz = [n_inputs] + n_outputs
self.layers = [Layer(sz[i], sz[i + 1]) for i in range(len(n_outputs))]
def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x
def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]

View File

File diff suppressed because one or more lines are too long

View File

@@ -1,338 +0,0 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import math
import mlx.core as mx
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
# In[2]:
def f(x):
return 3*x**2 - 4*x + 5
# In[3]:
f(3.0)
# In[4]:
xs = mx.arange(-5, 5, 0.25)
ys = f(xs)
plt.plot(xs, ys)
# **Simple refresher on differentiation**
# $$
# L = \lim_{h \rightarrow 0}\frac{f(x + h) - f(x)}{h}
# $$
# In[5]:
h = 0.0001
x = 3.0
# In[6]:
f(x), f(x + h)
# In[7]:
(f(x + h) - f(x)) / h
# ### **micrograd implementation**
# In[8]:
class Value:
def __init__(self, data, _parents=(), _op=''):
self.data = data
self._parents = _parents
self._op = _op
# gradient
self.grad = 0.0 # at init, the value does not affect the output
self._backward = lambda: None
def __repr__(self):
return f"Value(data={self.data})"
def __add__(self, other: 'Value') -> 'Value':
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += 1.0 * out.grad
other.grad += 1.0 * out.grad
out._backward = _backward
return out
def __radd__(self, other: 'Value') -> 'Value':
return self + other
def __mul__(self, other: 'Value') -> 'Value':
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def __neg__(self) -> 'Value':
return -1 * self
def __sub__(self, other: 'Value') -> 'Value':
return self + (-other)
def __rsub__(self, other: 'Value') -> 'Value':
return Value(other) - self
def __rmul__(self, other: 'Value') -> 'Value':
return self * other
def __pow__(self, other: 'Value') -> 'Value':
assert isinstance(other, (int, float)), "only support int/float powers for now"
out = Value(self.data**other, (self, ), f'**{other}')
def _backward():
self.grad += (other * self.data**(other - 1)) * out.grad
out._backward = _backward
return out
def __truediv__(self, other: 'Value') -> 'Value':
return self * other**-1
def tanh(self) -> 'Value':
x = self.data
_tanh = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(_tanh, (self, ), 'tanh')
def _backward():
self.grad += (1 - _tanh ** 2) * out.grad
out._backward = _backward
return out
def exp(self) -> 'Value':
x = self.data
out = Value(math.exp(x), (self, ), 'exp')
def _backward():
self.grad += out.data * out.grad
out._backward = _backward
return out
def backward(self):
topo = []
visited = set()
def build_topo(v: 'Value'):
if v not in visited:
visited.add(v)
for child in v._parents:
build_topo(child)
topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()
# In[9]:
# manual backprop
a = Value(2.0)
b = Value(-3.0)
c = Value(10.0)
d = a*b + c
# If we change 'a' by a small amount 'h'
# How would the gradient change?
a = Value(a.data + h)
d_ = a*b + c
print(f"Gradient: {(d_.data - d.data)/h}")
# **autograd example**
# In[10]:
x1 = Value(2.0)
x2 = Value(0.0)
w1 = Value(-3.0)
w2 = Value(1.0)
b = Value(6.8813735870195432)
x1w1 = x1*w1
x2w2 = x2*w2
x1w1x2w2 = x1w1 + x2w2
n = x1w1x2w2 + b
o = n.tanh()
# ### **Neural Network, using micrograd**
# In[11]:
import random
class Neuron:
def __init__(self, n_inputs: int):
self.w = [Value(random.uniform(-1, 1)) for _ in range(n_inputs)]
self.b = Value(random.uniform(-1, 1))
def __call__(self, x: list) -> Value:
activations = sum((w_i * x_i for w_i, x_i in zip(self.w, x)), self.b)
out = activations.tanh()
return out
def parameters(self):
return self.w + [self.b]
# In[12]:
class Layer:
def __init__(self, n_inputs: int, n_outputs: int):
self.neurons = [Neuron(n_inputs) for _ in range(n_outputs)]
def __call__(self, x: list) -> list[Value]:
outs = [n(x) for n in self.neurons]
return outs
def parameters(self):
return [p for n in self.neurons for p in n.parameters()]
# In[13]:
class MLP:
def __init__(self, n_inputs: int, n_outputs: int):
sz = [n_inputs] + n_outputs
self.layers = [Layer(sz[i], sz[i + 1]) for i in range(len(n_outputs))]
def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x
def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]
# In[14]:
# single neuron example
x = [2.5, 3.5]
n = Neuron(len(x))
n(x)
# In[15]:
# layer of neurons example
x = [1.5, 4.5]
nn = Layer(2, 3)
nn(x)
# In[16]:
# MLP example: input with 3 neurons, first layers with 4 neurons, second layer with 4 neurons, last output layer with 1 neuron
x = [2.0, 3.0, -1.0]
nn = MLP(3, [4, 4, 1])
nn(x)
# ### **Tune weights of our neural net**
# In[72]:
nn = MLP(3, [4, 4, 1])
# In[73]:
xs = [
[2.0, 3.0, -1.0],
[3.0, -1.0, 0.5],
[0.5, 1.0, 1.0],
[1.0, 1.0, -1.0]
]
ys = [1.0, -1.0, -1.0, 1.0]
# In[74]:
# Training loop
lr = 0.05
epochs = 50
for epoch in range(epochs):
# forward pass
y_preds = [nn(x) for x in xs]
loss = sum((y_pred[0] - y_true)**2 for y_true, y_pred in zip(ys, y_preds))
# backward pass
for p in nn.parameters(): # zero grad
p.grad = 0.0
loss.backward()
# update
for p in nn.parameters():
p.data += -lr * p.grad
print(epoch, loss.data)
# In[75]:
y_preds
# In[ ]:

View File

@@ -1,9 +1,13 @@
[project]
name = "karpathy-micrograd"
name = "smoltorch"
version = "0.1.0"
description = "Add your description here"
description = "A tiny autograd engine and neural network library built from first principles"
readme = "README.md"
requires-python = ">=3.12"
license = {text = "MIT"}
authors = [
{name = "Kashif", email = "me@ifkash.dev"}
]
dependencies = [
"ipykernel>=7.1.0",
"ipython>=9.7.0",
@@ -20,4 +24,9 @@ dev = [
]
[tool.setuptools]
packages = ["nanotorch", "micrograd"]
packages = ["smoltorch"]
[project.urls]
Homepage = "https://github.com/kashifulhaque/smoltorch"
Repository = "https://github.com/kashifulhaque/smoltorch"
Issues = "https://github.com/kashifulhaque/smoltorch/issues"

18
smoltorch/__init__.py Normal file
View File

@@ -0,0 +1,18 @@
"""
smoltorch: A tiny autograd engine and neural network library
Built from first principles for educational purposes
"""
__version__ = "0.1.0"
from smoltorch.optim import SGD
from smoltorch.tensor import Tensor
from smoltorch.nn import Linear, MLP, binary_cross_entropy
__all__ = [
"Tensor",
"Linear",
"MLP",
"binary_cross_entropy",
"SGD"
]

View File

@@ -1,5 +1,5 @@
import numpy as np
from nanotorch.tensor import Tensor
from smoltorch.tensor import Tensor
# helper functions
def binary_cross_entropy(y_pred, y_true):
@@ -90,21 +90,3 @@ class MLP:
for layer in self.layers:
params.extend(layer.parameters())
return params
class SGD:
def __init__(self, parameters, lr=0.01):
"""
Args
parameters: list of Tensor objects to minimize
lr: learning rate
"""
self.parameters = parameters
self.lr = lr
def step(self):
for param in self.parameters:
param.data -= self.lr * param.grad
def zero_grad(self):
for param in self.parameters:
param.grad = np.zeros_like(param.data, dtype=np.float64)

19
smoltorch/optim.py Normal file
View File

@@ -0,0 +1,19 @@
import numpy as np
class SGD:
def __init__(self, parameters, lr=0.01):
"""
Args
parameters: list of Tensor objects to minimize
lr: learning rate
"""
self.parameters = parameters
self.lr = lr
def step(self):
for param in self.parameters:
param.data -= self.lr * param.grad
def zero_grad(self):
for param in self.parameters:
param.grad = np.zeros_like(param.data, dtype=np.float64)

View File

@@ -1,4 +1,4 @@
from nanotorch.tensor import Tensor
from smoltorch.tensor import Tensor
# Test 1: ReLU
print("Test 1 - ReLU:")

View File

@@ -1,4 +1,4 @@
from nanotorch.tensor import Tensor
from smoltorch.tensor import Tensor
# Test 1: Simple addition (no broadcasting)
a = Tensor([1.0, 2.0, 3.0])

View File

@@ -1,5 +1,5 @@
from nanotorch.nn import Linear
from nanotorch.tensor import Tensor
from smoltorch.nn import Linear
from smoltorch.tensor import Tensor
# Test 1: Single sample forward pass
print("Test 1 - Single forward pass:")

View File

@@ -1,4 +1,4 @@
from nanotorch.tensor import Tensor
from smoltorch.tensor import Tensor
# Test 1: Simple 2D matmul
print("Test 1 - Simple 2D matmul:")

View File

@@ -1,6 +1,6 @@
import numpy as np
from nanotorch.tensor import Tensor
from nanotorch.nn import MLP
from smoltorch.tensor import Tensor
from smoltorch.nn import MLP
# Test 1: MLP forward pass
print("Test 1 - MLP forward pass:")

View File

@@ -1,4 +1,4 @@
from nanotorch.tensor import Tensor
from smoltorch.tensor import Tensor
# Test 1: Simple multiplication (no broadcasting)
print("Test 1 - No broadcasting:")

View File

@@ -1,4 +1,4 @@
from nanotorch.tensor import Tensor
from smoltorch.tensor import Tensor
# Test 1: Sum all elements
print("Test 1 - Sum (all elements):")

66
uv.lock generated
View File

@@ -471,39 +471,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780", size = 15884, upload-time = "2023-11-23T09:26:34.325Z" },
]
[[package]]
name = "karpathy-micrograd"
version = "0.1.0"
source = { virtual = "." }
dependencies = [
{ name = "ipykernel" },
{ name = "ipython" },
{ name = "matplotlib" },
{ name = "mlx" },
{ name = "nbconvert" },
{ name = "numpy" },
{ name = "scikit-learn" },
]
[package.dev-dependencies]
dev = [
{ name = "pytest" },
]
[package.metadata]
requires-dist = [
{ name = "ipykernel", specifier = ">=7.1.0" },
{ name = "ipython", specifier = ">=9.7.0" },
{ name = "matplotlib", specifier = ">=3.10.7" },
{ name = "mlx", specifier = ">=0.29.4" },
{ name = "nbconvert", specifier = ">=7.16.6" },
{ name = "numpy", specifier = ">=2.3.4" },
{ name = "scikit-learn", specifier = ">=1.7.2" },
]
[package.metadata.requires-dev]
dev = [{ name = "pytest", specifier = ">=9.0.1" }]
[[package]]
name = "kiwisolver"
version = "1.4.9"
@@ -1347,6 +1314,39 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" },
]
[[package]]
name = "smoltorch"
version = "0.1.0"
source = { virtual = "." }
dependencies = [
{ name = "ipykernel" },
{ name = "ipython" },
{ name = "matplotlib" },
{ name = "mlx" },
{ name = "nbconvert" },
{ name = "numpy" },
{ name = "scikit-learn" },
]
[package.dev-dependencies]
dev = [
{ name = "pytest" },
]
[package.metadata]
requires-dist = [
{ name = "ipykernel", specifier = ">=7.1.0" },
{ name = "ipython", specifier = ">=9.7.0" },
{ name = "matplotlib", specifier = ">=3.10.7" },
{ name = "mlx", specifier = ">=0.29.4" },
{ name = "nbconvert", specifier = ">=7.16.6" },
{ name = "numpy", specifier = ">=2.3.4" },
{ name = "scikit-learn", specifier = ">=1.7.2" },
]
[package.metadata.requires-dev]
dev = [{ name = "pytest", specifier = ">=9.0.1" }]
[[package]]
name = "soupsieve"
version = "2.8"