Files
smoltorch/notebooks/nb.py

339 lines
5.5 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[1]:
import math
import mlx.core as mx
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
# In[2]:
def f(x):
return 3*x**2 - 4*x + 5
# In[3]:
f(3.0)
# In[4]:
xs = mx.arange(-5, 5, 0.25)
ys = f(xs)
plt.plot(xs, ys)
# **Simple refresher on differentiation**
# $$
# L = \lim_{h \rightarrow 0}\frac{f(x + h) - f(x)}{h}
# $$
# In[5]:
h = 0.0001
x = 3.0
# In[6]:
f(x), f(x + h)
# In[7]:
(f(x + h) - f(x)) / h
# ### **micrograd implementation**
# In[8]:
class Value:
def __init__(self, data, _parents=(), _op=''):
self.data = data
self._parents = _parents
self._op = _op
# gradient
self.grad = 0.0 # at init, the value does not affect the output
self._backward = lambda: None
def __repr__(self):
return f"Value(data={self.data})"
def __add__(self, other: 'Value') -> 'Value':
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += 1.0 * out.grad
other.grad += 1.0 * out.grad
out._backward = _backward
return out
def __radd__(self, other: 'Value') -> 'Value':
return self + other
def __mul__(self, other: 'Value') -> 'Value':
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def __neg__(self) -> 'Value':
return -1 * self
def __sub__(self, other: 'Value') -> 'Value':
return self + (-other)
def __rsub__(self, other: 'Value') -> 'Value':
return Value(other) - self
def __rmul__(self, other: 'Value') -> 'Value':
return self * other
def __pow__(self, other: 'Value') -> 'Value':
assert isinstance(other, (int, float)), "only support int/float powers for now"
out = Value(self.data**other, (self, ), f'**{other}')
def _backward():
self.grad += (other * self.data**(other - 1)) * out.grad
out._backward = _backward
return out
def __truediv__(self, other: 'Value') -> 'Value':
return self * other**-1
def tanh(self) -> 'Value':
x = self.data
_tanh = (math.exp(2*x) - 1) / (math.exp(2*x) + 1)
out = Value(_tanh, (self, ), 'tanh')
def _backward():
self.grad += (1 - _tanh ** 2) * out.grad
out._backward = _backward
return out
def exp(self) -> 'Value':
x = self.data
out = Value(math.exp(x), (self, ), 'exp')
def _backward():
self.grad += out.data * out.grad
out._backward = _backward
return out
def backward(self):
topo = []
visited = set()
def build_topo(v: 'Value'):
if v not in visited:
visited.add(v)
for child in v._parents:
build_topo(child)
topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()
# In[9]:
# manual backprop
a = Value(2.0)
b = Value(-3.0)
c = Value(10.0)
d = a*b + c
# If we change 'a' by a small amount 'h'
# How would the gradient change?
a = Value(a.data + h)
d_ = a*b + c
print(f"Gradient: {(d_.data - d.data)/h}")
# **autograd example**
# In[10]:
x1 = Value(2.0)
x2 = Value(0.0)
w1 = Value(-3.0)
w2 = Value(1.0)
b = Value(6.8813735870195432)
x1w1 = x1*w1
x2w2 = x2*w2
x1w1x2w2 = x1w1 + x2w2
n = x1w1x2w2 + b
o = n.tanh()
# ### **Neural Network, using micrograd**
# In[11]:
import random
class Neuron:
def __init__(self, n_inputs: int):
self.w = [Value(random.uniform(-1, 1)) for _ in range(n_inputs)]
self.b = Value(random.uniform(-1, 1))
def __call__(self, x: list) -> Value:
activations = sum((w_i * x_i for w_i, x_i in zip(self.w, x)), self.b)
out = activations.tanh()
return out
def parameters(self):
return self.w + [self.b]
# In[12]:
class Layer:
def __init__(self, n_inputs: int, n_outputs: int):
self.neurons = [Neuron(n_inputs) for _ in range(n_outputs)]
def __call__(self, x: list) -> list[Value]:
outs = [n(x) for n in self.neurons]
return outs
def parameters(self):
return [p for n in self.neurons for p in n.parameters()]
# In[13]:
class MLP:
def __init__(self, n_inputs: int, n_outputs: int):
sz = [n_inputs] + n_outputs
self.layers = [Layer(sz[i], sz[i + 1]) for i in range(len(n_outputs))]
def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x
def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]
# In[14]:
# single neuron example
x = [2.5, 3.5]
n = Neuron(len(x))
n(x)
# In[15]:
# layer of neurons example
x = [1.5, 4.5]
nn = Layer(2, 3)
nn(x)
# In[16]:
# MLP example: input with 3 neurons, first layers with 4 neurons, second layer with 4 neurons, last output layer with 1 neuron
x = [2.0, 3.0, -1.0]
nn = MLP(3, [4, 4, 1])
nn(x)
# ### **Tune weights of our neural net**
# In[72]:
nn = MLP(3, [4, 4, 1])
# In[73]:
xs = [
[2.0, 3.0, -1.0],
[3.0, -1.0, 0.5],
[0.5, 1.0, 1.0],
[1.0, 1.0, -1.0]
]
ys = [1.0, -1.0, -1.0, 1.0]
# In[74]:
# Training loop
lr = 0.05
epochs = 50
for epoch in range(epochs):
# forward pass
y_preds = [nn(x) for x in xs]
loss = sum((y_pred[0] - y_true)**2 for y_true, y_pred in zip(ys, y_preds))
# backward pass
for p in nn.parameters(): # zero grad
p.grad = 0.0
loss.backward()
# update
for p in nn.parameters():
p.data += -lr * p.grad
print(epoch, loss.data)
# In[75]:
y_preds
# In[ ]: